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A cylindrically symmetric magnetic field in the 
presence of freely moving particles 

M. M. SOM 
Physics Department, City College, Calcutta, India 
MS. received 20th June 1967 

Abstract. The paper demonstrates the existence of a solution of the Einstein-Maxwell 
equations in general relativity where matter coexists with a cylindrically symmetric 
axial field. 

1. Introduction 
I n  two previous papers the author (Som 1964,1967) has shown that Einstein-Maxwell’s 

equations do not permit an acceptable solution corresponding to a cylindrically symmetric 
radial electrostatic (or magnetostatic) field. I t  seems worth while to investigate whether a 
cylindrically symmetric axial field is consistent with the Einstein-Maxwell equations in 
general relativity. In  the literature there already exists such a singularity-free solution- 
the so-called Melvin magnetic universe (Melvin 1964). However, the Melvin universe is a 
purely magnetic universe having no matter anywhere. In  the present paper explicit solutions 
are obtained where matter coexists with an axial magnetic field. Matter here is presented in 
the form of two clusters of particles moving in circles in counter directions, as in a previous 
paper by Raychoudhuri and Som (1962), so that in the absence of the magnetic field the 
solutions reduce to those previously found. As the particles are uncharged, the interaction is 
purely gravitational. 

2. Basic equation 

equations are 
For regions in which there are both matter and magnetic field, the Einstein-Maxwell 

R’ v - W R  2 v  = - 8n( T{ + E!) (1) 
with 

E: = - F”F v u  + WF‘aFuB 4 v 

and 

where pi is the density of the ith group of particles having velocity vector vtp.  In  the present 
case there are only two groups, so that i = 1, 2 and 

We number the radial, axial and the angular coordinates Y, z, + as 1, 2, 3, so that for a 
purely axial magnetic field the only non-vanishing component of Fug is F13. Equations (4b)  
are then automatically satisfied as F,, is a function of Y alone. Therefore E: = -E; and 
Ti = T;  = 0, so that we obtain 

RE+Ri = 0 .  
The cylindrically symmetric line element may therefore be taken in Weyl’s canonical form 
(Synge 1960) 

where cc and p are functions of Y alone owing to the assumed symmetry. 

ds2 = exp(2rx) dt2 - exp(2P - 2x)(d+ + d 2 )  - y 2  exp( - 2rx) d+2 (5) 
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Since there is no non-gravitational interaction, the particles may be assumed to follow 
geodesics as in a paper by Einstein (1939), and hence 

ava 
- + r,vvv = 0. 
as 

For a purely circular 
element ( 5 ) ,  equation 

motion in the ( Y ,  +) plane drlds = dxjds = 0. Thus, with the line 
(6) reduces to 

r ; 3 ( V 3 ) 2 +  ri4(”4)2 = o 
dv3 dv2 
ds ds 

- 0. _ -  

From equations ( 5 )  and (7), we obtain 
e2ax’ 

(v”2 = 

(v”2 = 

Y (  1 - 2ra’) 
e-2u(1 -m’)  

1 - 2ra’ 

Equations (9) and (10) demand that our real system must satisfy the condition 

Now, from equation (4) we have 

k being a constant. The  surviving components of E’ are then 

Y%’ < *. 
F31 = kre-2u  

and the surviving components of T t  are 

T: vanishes owing to the assumption that equal numbers of particles are moving in counter 
directions. 

The  field equations now give 

Y%I 

1 - 2ra’ 
exp(2a - 2p)(p” + ar2)  = 8np - + 47rk2 exp( - 2j3) 

+ 4rk2 exp( - 2j3). 
Y 1 - 2Y%‘ 

Equations (16) to (18) are not, however, independent. The conservation relation of energy- 
stress and the Bianchi identity give an identical relation between them. We shall therefore 
take, as equations of our problem, (16) and the sum of (17) and (18): 

exp(2x - 2j3) (a’/ + 4rp + 4rk2 exp( - 2p). 

Thus we have two equations (16) and (19) involving three unknowns a,  /3 and p. Thus we 
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can choose a arbitrarily to construct a solution. As our purpose here is merely to exhibit 
the existence of a solution we make the simple choice 

a = ln(k,+k2r2/a2) (20) 
where k, and k, are constants and a is the radius of the bounded distribution. 

Now from equations (16) and (20) we obtain 
k1 - z-k2a2 /k2 

/3 = 2 I n  ( k , + & c )  + 2  +D 
a2 kl + k2y2 /a2 

where D is a constant. 
For the exterior static field we use the solutions given by Ghosh and Sengupta (1965) 

z-k2 

and 
/3 = 2a+h(X-2) I n r + l n B .  

By continuity at r = a,  we have 

(25 ) 

(26) 

z-k2 

X(h-2)[aA+ {z-k2/(1 -h)2)a2-A] 
[ha'"+ {n-k2/(1 -h)2)(2-h)a2-A] 

D = h(X-2) h a  + + 1nB. 

A necessary condition for the metric to be regular at Y = 0 is /3 = 0. This condition 
fixes the value of the constant B, which can now be evaluated from equations (21) and (26). 

Thus equations (24) to (26) ensure the continuity of the metric tensor at the boundary. 
Further, we require the continuity of the normal component of the energy tensor, The 
continuity of the normal component of the energy tensor depends only on the continuity of 
E:, the electromagnetic energy tensor. This is secured by the continuity of F13, the only 
non-vanishing component of the electromagnetic field tensor and the continuity of the 
metric tensor. Now equation (11) gives, at Y = a, 

k2 < Qk,. (27) 
Substituting values of k, and k2 and after some simple calculation, we obtain 

where 

which is a positive quantity. Equation (28) can be satisfied only if either X < & or h > $. 
For any value of X < 4, equation (28) sets an upper bound top,  while for X > # equation (28) 
sets a lower bound to p. In  view of equation (29), both of these correspond to an upper 
bound for a, the radius of the matter distribution. Again, from equations (28), (20) and (21) 
we obtain 

4n-p = e - 2 f i r T  - 4nk2 ) (1 - & E ' ) .  (30) 

Since matter density is positive definite, we have the condition from equation (30) that 

i.e. 
k,k2 > z-k2a2 
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which shows that 
O < X < 2 .  

Therefore from equation (28) we find that X has two sets of values: 

( 9  
(ii) 

For either X = 0 or X = 2 our metric goes over to that of the Melvin universe. For 
k = 0 the solutions correspond to that obtained by the author previously for stationary 
cylindrically symmetric clusters of particles. 

Solutions for two values of h (A, and A,) such that X = A, + X2 are essentially the same. 
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